
ar
X

iv
:m

at
h.

H
O

/9
91

11
50

 v
1

 1
9

N
ov

 1
99

9 Machines, Logic and Quantum Physics

David Deutsch and Artur Ekert

Centre for Quantum Computation, Clarendon Laboratory,

University of Oxford, Parks Road, Oxford, OX1 3PU, U.K.

Rossella Lupacchini
Dipartimento di Filosofia, Universita di Bologna,

Via Zamboni 38, 40126 Bologna, Italy.

19 November 1999

Abstract

Though the truths of logic and pure mathematics are objective and
independent of any contingent facts or laws of nature, our knowledge of

these truths depends entirely on our knowledge of the laws of physics.
Recent progress in the quantum theory of computation has provided

practical instances of this, and forces us to abandon the classical view
that computation, and hence mathematical proof, are purely logical
notions independent of that of computation as a physical process.

Henceforward, a proof must be regarded not as an abstract object or
process but as a physical process, a species of computation, whose

scope and reliability depend on our knowledge of the physics of the
computer concerned.

1 Mathematics and the physical world

Genuine scientific knowledge cannot be certain, nor can it be justified a
priori. Instead, it must be conjectured, and then tested by experiment, and
this requires it to be expressed in a language appropriate for making precise,
empirically testable predictions. That language is mathematics.

1

This in turn constitutes a statement about what the physical world must
be like if science, thus conceived, is to be possible. As Galileo put it, “the
universe is written in the language of mathematics”[5]. Galileo’s introduc-
tion of mathematically formulated, testable theories into physics marked the
transition from the Aristotelian conception of physics, resting on supposedly
necessary a priori principles, to its modern status as a theoretical, conjec-
tural and empirical science. Instead of seeking an infallible universal math-
ematical design, Galilean science uses mathematics to express quantitative
descriptions of an objective physical reality. Thus mathematics has become
the language in which we express our knowledge of the physical world. This
language is not only extraordinarily powerful and precise, but also effective
in practice. Eugene Wigner referred to “the unreasonable effectiveness of
mathematics in the physical sciences”[12]. But is this effectiveness really
unreasonable or miraculous?

Consider how we learn about mathematics. Do we – that is, do our
brains – have direct access to the world of abstract concepts and the relations
between them (as Plato believed, and as Roger Penrose now advocates[8]), or
do we learn mathematics by experience, that is by interacting with physical
objects? We believe the latter. This is not to say that the subject-matter of
mathematical theories is in any sense part of, or emerges out of, the physical
world. We do not deny that numbers, sets, groups and algebras have an
autonomous reality quite independent of what the laws of physics decree,
and the properties of these mathematical structures are just as objective
as Plato believed they were. But they are revealed to us only through the
physical world. It is only physical objects, such as computers or human
brains, that ever give us glimpses of the abstract world of mathematics. But
how?

It is a familiar fact, and has been since the prehistoric beginnings of
mathematics, that simple physical systems like fingers, tally sticks and the
abacus can be used to represent some mathematical entities and operations.
Historically the operations of elementary arithmetic were also the first to
be delegated to more complex machines. As soon as it became clear that
additions and multiplications can be performed by a sequence of basic pro-
cedures and that these procedures are implementable as physical operations,
mechanical devices designed by Blaise Pascal, Gottfried Wilhelm Leibniz and
others began to relieve humans from tedious tasks such as multiplying two
large integers [6]. In the twentieth century, following this conquest of arith-
metic, the logical concept of computability was the next to be delegated to

2

machines. Turing machines were invented in order to formalise the notion
of “effectiveness” inherent in the intuitive idea of calculability. Alan Tur-
ing conjectured that the theoretical machines in terms of which he defined
computation are capable of performing any finite, effective procedure (algo-
rithm). It is worth noting that Turing machines were intended to reproduce
every definite operation that a human computer could perform, following
preassigned instructions. Turing’s method was to think in terms of physical
operations, and imagine that every operation performed by the computer
“consists of some change of the physical system consisting of the computer
and his tape”[11]. The key point is that since the outcome is not affected by
constructing “a machine to do the work of this computer”, the effectiveness
of a human computer can be mimicked by a logical machine.

The Turing machine was an abstract construct, but thanks to subse-
quent developments in the theory of computation, algorithms can now be
performed by real automatic computing machines. The natural question
now arises: what, precisely, is the set of logical procedures that can be per-
formed by a physical device? The theory of Turing machines cannot, even in
principle, answer this question, nor can any approach based on formalising
traditional notions of effective procedures. What we need instead is to ex-
tend Turing’s idea of mechanising procedures, in particular, the procedures
involved in the notion of derivability. This would define mathematical proofs
as being mechanically reproducible and to that extent effectively verifiable.
The universality and reliability of logical procedures would be guaranteed
by the mechanical procedures that effectively perform logical operations –
but by no more than that. But what does it mean to involve real, physical
machines in the definition of a logical notion? and what might this imply in
return about the ‘reasonableness’ or otherwise of the effectiveness of physics
in the mathematical sciences?

While the abstract model of a machine, as used in the classical theory
of computation, is a pure-mathematical construct to which we can attribute
any consistent properties we may find convenient or pleasing, a considera-
tion of actual computing machines as physical objects must take account of
their actual physical properties, and therefore, in particular, of the laws of
physics. Turing’s machines (with arbitrarily long tapes) can be built, but
no one would ever do so except for fun, as they would be extremely slow
and cumbersome. We find the computers now available much faster and
more reliable. Where does this reliability come from? How do we know that
the computer generates the same outputs as the appropriate abstract Tur-

3

ing machine, that the machinery of cog-wheels must finally display the right
answer? After all, nobody has tested the machine by following all possible
logical steps, or by performing all the arithmetic it can perform. If they were
able and willing to do that, there would be no need to build the computer in
the first place. The reason we trust the machine cannot be based entirely on
logic; it must also involve our knowledge of the physics of the machine. We
take for granted the laws of physics that govern the computation, i.e. the
physical process that takes the machine from an initial state (input) to a final
state (output). Moreover, our understanding is informed by physical theories
which, though formulated in mathematical terms in the tradition of Galileo,
evolved by conjectures and empirical refutations. In this perspective, what
Turing really asserted was that it is possible to build a universal computer,
a machine that can be programmed to perform any computation that any
other physical object can perform. That is to say, a single buildable physical
object, given only proper maintenance and a supply of energy and additional
memory when needed, can mimic all the behavior and responses of any other
physically possible object or process. In this form Turing’s conjecture (which
Deutsch has called in this context the Church-Turing principle [3]) can be
viewed as a statement about the physical world.

Are there any limits to computations performed by computing machines?
Obviously there are both logical and physical limits. Logic tells us that, for
example, no machine can find more than one even prime, whilst physics tells
us that, for example, no computations can violate the laws of thermodynam-
ics. Moreover, logical and physical limitations can be intimately linked, as
illustrated by the ”halting problem” . According to logic, the halting prob-
lem says that there is no algorithm for deciding whether any given machine,
when started from any given initial situation, eventually stops. Therefore
some computational problems, such as determining whether a specified uni-
versal Turing machine, given a specified input, will halt, cannot be solved
by any Turing machine. In physical terms, this statement says that ma-
chines with certain properties cannot be physically built, and as such can be
viewed as a statement about physical reality or equivalently about the laws
of physics.

So where does mathematical effectiveness come from? It is not simply
a miracle, “a wonderful gift which we neither understand nor deserve” [12]
– at least, no more so than our ability to discover empirical knowledge, for
our knowledge of mathematics and logic is inextricably entangled with our
knowledge of physical reality: every mathematical proof depends for its ac-

4

ceptance upon our agreement about the rules that govern the behavior of
physical objects such as computers or our brains. Hence when we improve
our knowledge about physical reality, we may also gain new means of im-
proving our knowledge of logic, mathematics and formal notions. It seems
that we have no choice but to recognize the dependence of our mathematical
knowledge (though not, we stress, of mathematical truth itself) on physics,
and that being so, it is time to abandon the classical view of computation
as a purely logical notion independent of that of computation as a physical
process. In the following we discuss how the discovery of quantum mechanics
in particular has changed our understanding of the nature of computation.

2 Quantum interference

To explain what makes quantum computers so different from their classical
counterparts, we begin with the phenomenon of quantum interference. Con-
sider the following computing machine whose input can be prepared in one
of two states representing, 0 and 1.

Figure 1: Schematic representation of the most general machine that per-
forms a computation mapping {0, 1} to itself. Here pij is the probability for
the machine to produce the output j when presented with the input i. (The
action of the machine depends on no other input or stored information.)

The machine has the property that if we prepare its input with the value
a (a = 0 or 1) and then measure the output, we obtain, with probability pab,
the value b (b = 0 or 1). It may seem obvious that if the pab are arbitrary
apart from satisfying the standard probability conditions

∑
b pab = 1, Fig. (1)

represents the most general machine whose action depends on no other input
or stored information and which performs a computation mapping {0, 1} to
itself. The two possible deterministic limits are obtained by setting p01 =

5

p10 = 0, p00 = p11 = 1 (which gives a logical identity machine) or p01 =
p10 = 1, p00 = p11 = 0 (which gives a negation (‘not’) machine). Otherwise
we have a randomising device. Let us assume, for the sake of illustration,
that p01 = p10 = p00 = p11 = 0.5. Again, we may be tempted to think of such
a machine as a random switch which, with equal probability, transforms any
input into one of the two possible outputs. However, that is not necessarily
the case. When the particular machine we are thinking of is followed by
another, identical, machine the output is always the negation of the input.

Figure 2: Concatenation of the two identical machines mapping {0, 1} to
itself. Each machine, when tested separately, behaves as a random switch,
however, when the two machines are concatenated the randomness disappears
- the net effect is the logical operation not. This is in clear contradiction
with the axiom of additivity in probability theory!

This is a very counter-intuitive claim - the machine alone outputs 0 or 1
with equal probability and independently of the input, but the two machines,
one after another, acting independently, implement the logical operation not.
That is why we call this machine

√
not. It may seem reasonable to argue

that since there is no such operation in logic, the
√

not machine cannot exist.
But it does exist! Physicists studying single-particle interference routinely
construct them, and some of them are as simple as a half-silvered mirror
i.e. a mirror which with probability 50% reflects a photon which impinges
upon it and with probability 50% allows it to pass through. Thus the two
concatenated machines are realised as a sequence of two half-silvered mirrors
with a photon in each denoting 0 if it is on one of the two possible paths and
1 if it is on the other.

The reader may be wondering what has happened to the axiom of additiv-
ity in probability theory, which says that if E1 and E2 are mutually exclusive
events then the probability of the event (E1 or E2) is the sum of the proba-

6

Figure 3: The experimental realisation of the
√

not gate. A half-silvered
mirror reflects half the light that impinges upon it. But a single photon
doesn’t split: when we send a photon at such a mirror it is detected, with
equal probability, either at Output 0 or 1. This does not, however, mean
that the photon leaves the mirror in either of the two outputs at random.
In fact the photon takes both paths at once! This can be demonstrated by
concatenating two half-silvered mirrors as shown in the next figure.

bilities of the constituent events, E1, E2. We may argue that the transition
0 → 0 in the composite machine can happen in the two mutually exclusive
ways, namely, 0 → 0 → 0 or 0 → 1 → 0. The probabilities of the two are
p00p00 and p01p10 respectively. Thus the sum p00p00 + p01p10 represents the
probability of the 0 → 0 transition in the new machine. Provided that p00 or
p01p10 are different from zero, this probability should also be different from
zero. Yet we can build machines in which p00 and p01p10 are different from
zero, but the probability of the 0 → 0 transition in the composite machine
is equal to zero. So what is wrong with the above argument?

One thing that is wrong is the assumption that the processes 0→ 0→ 0
and 0 → 1 → 0 are mutually exclusive. In reality, the two transitions both
occur, simultaneously. We cannot learn about this fact from probability the-
ory or any other a priori mathematical construct. We learn it from the best
physical theory available at present, namely quantum mechanics. Quantum
theory explains the behavior of

√
not and correctly predicts the probabili-

ties of all the possible outputs no matter how we concatenate the machines.
This knowledge was created as the result of conjectures, experimentation,
and refutations. Hence, reassured by the physical experiments that corrobo-
rate this theory, logicians are now entitled to propose a new logical operation

7

Figure 4: The experimental realisation of the two concatenated
√

not gates,
known as a single-particle interference. A photon which enters the interfer-
ometer via Input 0 always strikes a detector Output 1 and never a detector
at Output 0. Any explanation which assumes that the photon takes exactly
one path through the interferometer leads to the conclusion that the two de-
tectors should on average each fire on half the occasions when the experiment
is performed. But experiment shows otherwise!

√
not. Why? Because a faithful physical model for it exists in nature!

Let us now introduce some of the mathematical machinery of quantum
mechanics which can be used to describe quantum computing machines rang-
ing from the simplest, such as

√
not , to the quantum generalisation of the

universal Turing machine. At the level of predictions, quantum mechanics
introduces the concept of probability amplitudes – complex numbers c such
that the quantities |c|2 may under suitable circumstances be interpreted as
probabilities. When a transition, such as “a machine composed of two iden-
tical sub-machines starts in state 0 and generates output 0, and nothing
else happens”, can occur in several alternative ways, the overall probabil-
ity amplitude for the transition is the sum, not of the probabilities, but of
the probability amplitudes for each of the constituent transitions considered
separately.

8

Figure 5: Transitions in quantum machines are described by probability
amplitudes rather than probabilities. Probability amplitudes are complex
numbers c such that the quantities |c|2 may under suitable circumstances be
interpreted as probabilities. When a transition, such as “a machine composed
of two identical sub-machines starts in state 0 and generates output 0, and
nothing else happens”, can occur in several alternative ways, the probability
amplitude for the transition is the sum of the probability amplitudes for each
of the constituent transitions considered separately.

In the
√

not machine, the probability amplitudes of the 0 → 0 and 1→ 1
transitions are both i/

√
2, and the probability amplitudes of the 0 → 1 and

1 → 0 transitions are both 1/
√

2. This means, for example, that the
√

not
machine preserves the bit value with the probability amplitude c00 = c11 =
i/
√

2 and negates it with the probability amplitude c01 = c10 = 1/
√

2. In
order to obtain the corresponding probabilities we have to take the modulus
squared of the probability amplitudes which gives 1/2 both for preserving and
swapping the bit value. This describes the behavior of the

√
not machine

in Fig.(1). However, when we concatenate the two machines, as in Fig.(2)
then, in order to calculate the probability of output 0 on input 0, we have
to add the probability amplitudes of all computational paths leading from
input 0 to output 0. There are only two of them - c00c00 and c01c10. The first
computational path has probability amplitude i/

√
2× i/

√
2 = −1/2 and the

second one 1/
√

2 × 1/
√

2 = +1/2. We add the two probability amplitudes
first and then we take the modulus squared of the sum. We find that the
probability of output 0 is zero. Unlike probabilities, probability amplitudes
can cancel each other out!

9

3 Quantum algorithms

Addition of probability amplitudes, rather then probabilities, is one of the
fundamental rules for prediction in quantum mechanics and applies to all
physical objects, in particular quantum computing machines. If a computing
machine starts in a specific initial configuration (input) then the probability
that after its evolution via a sequence of intermediate configurations it ends
up in a specific final configuration (output)is the squared modulus of the sum
of all the probability amplitudes of the computational paths that connect the
input with the output. The amplitudes are complex numbers and may cancel
each other, which is referred to as destructive interference, or enhance each
other, referred to as constructive interference. The basic idea of quantum
computation is to use quantum interference to amplify the correct outcomes
and to suppress the incorrect outcomes of computations. Let us illustrate this
by describing a variant of the first quantum algorithm, proposed by David
Deutsch in 1985.

Consider the Boolean functions f that map {0, 1} to {0, 1}. There are
exactly four such functions: two constant functions (f(0) = f(1) = 0 and
f(0) = f(1) = 1) and two “balanced” functions (f(0) = 0, f(1) = 1 and
f(0) = 1, f(1) = 0). Suppose we are allowed to evaluate the function f only
once (given, say, a lengthy algorithm for evaluating it on a given input, or
a look-up table that may be consulted only once) and asked to determine
whether f is constant or balanced (in other words, whether f(0) and f(1)
are the same or different). Note that we are not asking for the particular
values f(0) and f(1) but for a global property of the function f . Our clas-
sical intuition insists, and the classical theory of computation confirms, that
to determine this global property of f , we have to evaluate both f(0) and
f(1), which involves evaluating f twice. Yet this is simply not true in physi-
cal reality, where quantum computation can solve Deutsch’s problem with a
single function evaluation. The machine that solves the problem, using quan-
tum interference, is composed of the two

√
nots with the function evaluation

machine in between them, as in Fig.(6).
We need not go into the technicalities of the physical implementation of

the evaluation of f(x), where f is in general a Boolean function mapping
{0, 1}n → {0, 1}m. But generally, a machine that evaluates such a function
must be capable of traversing as many computational paths as there are
possible values x in the domain of f (so we can label them with x). Its effect
is that the probability amplitude on path x is multiplied by the phase factor

10

Figure 6: Schematic representation of a quantum machine that solves
Deutsch’s problem with a single function evaluation.

exp
(

2πif(x)
2m

)
[2]. In the case of Deutsch’s problem the two phase factors

are (−1)f(0) and (−1)f(1). Now we can calculate the probability amplitude
of output 0 on input 0. The probability amplitudes on the two different
computational paths are i/

√
2 × (−1)f(0) × i/

√
2 = −1/2 × (−1)f(0) and

1/
√

2 × (−1)f(1)× 1/
√

2 = 1/2 × (−1)f(1). Their sum is

1

2

(
(−1)f(1) − (−1)f(0)

)
, (1)

which is 0 when f is constant and ±1 when f is balanced. Thus the
probability of output 0 on input 0 is given by the modulus squared of the
expression above, which is zero when f is constant and unity when f is bal-
anced. Deutsch’s result laid the foundation for the new field of quantum
computation. The hunt began for useful tasks for quantum computers to do.
A sequence of steadily improved quantum algorithms led in 1994 to Peter
Shor’s discovery of a quantum algorithm that, in principle, could perform
efficient factorisation [10]. Since the intractability of factorisation underpins
the security of many of the most secure known methods of encryption, includ-
ing the most popular public key cryptosystem RSA [9] 1, Shor’s algorithm
was soon hailed as the first ‘killer application’ for quantum computation —
something very useful that only a quantum computer could do.

Few if any mathematicians doubt that the factoring problem is in the

1In December 1997 the British Government officially confirmed that public-key cryptog-
raphy was originally invented at the Government Communications Headquarters (GCHQ)
in Cheltenham. By 1975, James Ellis, Clifford Cocks, and Malcolm Williamson from
GCHQ had discovered what was later re-discovered in academia and became known as
RSA and Diffie-Hellman key exchange.

11

“BPP”class (where BPP stands for “bounded error probabilistic polynomial
time”), but interestingly, this has never been proved. In computational com-
plexity theory it is customary to view problems in BPP as being “tractable”
or “solvable in practice” and problems not in BPP as “intractable” or “un-
solvable in practice on a computer” (see, for example, [7]). A ‘BPP class
algorithm’ for solving a problem is an efficient algorithm which, for any in-
put, provides an answer that is correct with a probability greater than some
constant δ > 1/2. In general we cannot check easily if the answer is cor-
rect or not but we may repeat the computation some fixed number k times
and then take a majority vote of all the k answers. For sufficiently large k
the majority answer will be correct with probability as close to 1 as desired.
Now, Shor’s result proves that factoring is not in reality an intractable task
– and we learned this by studying quantum mechanics!

As a matter of fact, Richard Feynman, in his talk during the First Con-
ference on the Physics of Computation held at MIT in 1981, observed that
it appears to be impossible to simulate a general quantum evolution on a
classical probabilistic computer in an efficient way [4]. That is to say, any
classical simulation of quantum evolution involves an exponential slowdown
in time compared with the natural evolution, since the amount of information
required to describe the evolving quantum state in classical terms generally
grows exponentially with time. However, instead of viewing this fact as an
obstacle, Feynman regarded it as an opportunity. If it requires so much
computation to work out what will happen in a complicated multiparticle
interference experiment then, he argued, the very act of setting up such an
experiment and measuring the outcome is tantamount to performing a com-
plex computation. Thus, Feynman suggested that it might be possible to
simulate a quantum evolution efficiently after all, provided that the simula-
tor itself is a quantum mechanical device. Furthermore, he conjectured that
if one wanted to simulate a different quantum evolution, it would not be
necessary to construct a new simulator from scratch. It should be possible
to choose the simulator so that minor systematic modifications of it would
suffice to give it any desired interference properties. He called such a device a
universal quantum simulator. In 1985 Deutsch proved that such a universal
simulator or a universal quantum computer does exist and that it could per-
form any computation that any other quantum computer (or any Turing-type
computer) could perform [3]. Moreover, it has since been shown that the time
and other resources that it would need to do these things would not increase
exponentially with the size or detail of the physical system being simulated,

12

so the relevant computations would be tractable by the standards of com-
plexity theory [1]. This illustrates the fact that the more we know about
physics, the more we know about computation and mathematics. Quantum
mechanics proves that factoring is tractable: without quantum mechanics we
do not yet know how to settle the issue either way.

4 Deterministic, Probabilistic, and Quantum

Computers

Any quantum computer, including the universal one, can be described in
a fashion similar to the special-purpose machines we have described above,
essentially by replacing probabilities by probability amplitudes. Let us start
with a classical Turing machine. This is defined by a finite set of quintuples
of the form

(q, s, q′, s′, d), (2)

where the first two characters describe the initial condition at the beginning
of a computational step and the remaining three characters describe the
effect of the instruction to be executed in that condition (q is the current
configuration, s is the symbol currently scanned, q′ is the configuration to
enter next, s′ is the symbol to replace s, and d indicates motion of one square
to the right, or one square to the left, or stay fixed, relative to the tape).
In this language a computation consists of presenting the machine with an
input which is a finite string of symbols from the alphabet Σ written in the
tape cells, then allowing the machine to start in the initial state q0 with
the head scanning the leftmost symbol of the input and to proceed with its
basic operations until it stops in its final (halting) state qh.(In some cases
the computation might not terminate.) The output of the computation is
defined as the contents of some chosen part of the tape when (and if) the
machine reaches its halting state.

During a computation the machine goes through a sequence of configu-
rations; each configuration provides a global description of the machine and
is determined by the string written on the entire tape, the state of the head
and the position of the head. For example, the initial configuration is given
by the input string, state q0, and the head scanning the leftmost symbol from
the input. There are infinitely many possible configurations of the machine
but in all successful computations the machine goes through only a finite

13

sequence of them. The transitions between configurations are completely
determined by the quintuples (2).

Figure 7: A three step deterministic computation.

Computations do not, in principle, have to be deterministic. Indeed, we
can augment a Turing machine by allowing it “to toss an unbiased coin” and
to choose its steps randomly. Such a probabilistic computation can be viewed
as a directed, tree-like graph where each node corresponds to a configuration
of the machine, and each edge represents one step of the computation. The
computation starts from the root node representing the initial configuration
and it subsequently branches into other nodes representing configurations
reachable with non-zero probability from the initial configuration. The action
of the machine is completely specified by a finite description of the form:

δ : Q× Σ×Q×Σ × {Left,Right,Nothing} 7−→ [0, 1], (3)

where δ(q, s, q′, s′, d) gives the probability that if the machine is in state q
reading symbol s it will enter state q′ , write s′ and move in direction d.
This description must conform to the laws of probability as applied to the
computation tree. If we associate with each edge of the graph the probability
that the computation follows that edge then we must require that the sum
of the probabilities on edges leaving any single node is always equal to 1.
Probability of a particular path being followed from the root to a given
node is the product of the probabilities along the path’s edges, and the
probability of a particular configuration being reached after n steps is equal
to the sum of the probabilities along all paths which in n steps connect the
initial configuration with that particular configuration. Such randomized
algorithms can solve some problems (with arbitrarily high probability less
than 1) much faster than any known deterministic algorithms.

The classical model described above suggests a natural quantum gener-
alisation. A quantum computation can be represented by a graph similar
to that of a probabilistic computation. Following the rules of quantum dy-
namics we associate with each edge in the graph the probability amplitude

14

Figure 8: The probabilistic Turing machine (left) - the probability of output
A is the sum of the probabilities of all computations leading to output A.
In the quantum Turing machine (on the right) the probability of output
A is obtained by adding all probability amplitudes leading from the initial
state to output A and then taking the squared modulus of the sum. In the
quantum case probabilities of some outcomes can be enhanced (constructive
interference) or suppressed (destructive interference) compared with what
classical probability theory would permit.

that the computation follows that edge. As before, the probability amplitude
of a particular path being followed is the product of the probability ampli-
tudes along the path’s edges and the probability amplitude of a particular
configuration is the sum of the amplitudes along all possible paths leading
from the root to that configuration. If a particular final configuration can
be reached via two different paths with amplitudes c and −c then the prob-
ability of reaching that configuration is |c− c|2 = 0 despite the fact that the
probability for the computation to follow either of the two paths separately is
|c|2 in both cases. Furthermore a single quantum computer can follow many
distinct computational paths simultaneously and produce a final output de-
pending on the interference of all of them. This is in contrast to a classical
probabilistic Turing machine which follows only some single (randomly cho-
sen) path. The action of any such quantum machine is completely specified

15

by a finite description of the form

δ : Q×Σ ×Q× Σ× {Left,Right,Nothing} 7−→ C (4)

where δ(q, s, q′, s′, d) gives the probability amplitude that if the machine is in
state q reading symbol s it will enter state q′ , write s′ and move in direction
d.

5 Deeper implications

When the physics of computation was first investigated, starting in the 1960s,
one of the main motivations was a fear that quantum-mechanical effects
might place fundamental bounds on the accuracy with which physical objects
could render the properties of the abstract entities, such as logical variables
and operations, that appear in the theory of computation. Thus it was feared
that the power and elegance of that theory, its most significant concepts
such as computational universality, its fundamental principles such as the
Church-Turing thesis and its powerful results such as the more modern theory
of complexity, might all be mere figments of pure mathematics, not really
relevant to anything in nature.

Those fears turned out to be groundless. Quantum mechanics, far from
placing limits on which Turing computations can be performed in nature,
permits them all, and in addition provides new modes of computation such
as those we have described. As far as the elegance of the theory goes, it
turns out that the quantum theory of computation hangs together better,
and fits in far more naturally with fundamental theories in other fields, than
its classical approximation was ever expected to. The very word ‘quantum’
means the same as the word ‘bit’ — an elementary chunk — and this re-
flects the fact that classical physical systems, being subject to the generic
instability known as ‘chaos’, would not support digital computation at all (so
even Turing machines, the theoretical prototype of all classical computers,
were secretly quantum-mechanical all along!). The Church-Turing thesis in
the classical theory (that all ‘natural’ models of computation are essentially
equivalent to each other), was never proved. Its analogue in the quantum
theory of computation (the Church-Turing Principle, that the universal quan-
tum computer can simulate the behavior of any finite physical system) was
straightforwardly proved in Deutsch’s 1985 paper [3]. A stronger result (also

16

conjectured but never proved in the classical case), namely that such sim-
ulations can always be performed in a time that is at most a polynomial
function of the time taken for the physical evolution, has since been proved
in the quantum case [1].

Among the many ramifications of quantum computation for apparently
distant fields of study are its implications for the notion of mathematical
proof. Performing any computation that provides a definite output is tan-
tamount to proving that the observed output is one of the possible results
of the given computation. Since we can describe the computer’s operations
mathematically, we can always translate such a computation into the proof
of some mathematical theorem. This was the case classically too, but in the
absence of interference effects it is always possible to keep a record of the
steps of the computation, and thereby produce (and check the correctness of)
a proof that satisfies the classical definition - as “a sequence of propositions
each of which is either an axiom or follows from earlier propositions in the
sequence by the given rules of inference”. Now we are forced to leave that
definition behind. Henceforward, a proof must be regarded as a process —
the computation itself — for we must accept that in future, quantum com-
puters will prove theorems by methods that neither a human brain nor any
other arbiter will ever be able to check step-by-step, since if the ‘sequence
of propositions’ corresponding to such a proof were printed out, the paper
would fill the observable universe many times over.

6 Concluding remarks

This brief discussion has merely scratched the surface of the rapidly develop-
ing field of quantum computation. We have concentrated on the fundamental
issues and have avoided discussing physical details and technological prac-
ticalities. However, it should be mentioned that quantum computing is a
serious possibility for future generations of computing devices. This is one
reason why the field is now attracting increasing attention from both aca-
demic researchers and industry worldwide. At present it is not clear when,
how and even whether fully-fledged quantum computers will eventually be
built; but notwithstanding this, the quantum theory of computation already
plays a much more fundamental role in the scheme of things than its clas-
sical predecessor did. We believe that anyone who seeks a fundamental un-
derstanding of either physics, computation or logic must incorporate its new

17

insights into their world view.

References

[1] E. BERNSTEIN and U. VAZIRANI, Quantum complexity theory, Pro-
ceedings of the 25th Annual Symposium on the Theory of Computing,
ACM, New York, 1993, pp. 11-20.

[2] R. CLEVE, A. EKERT, C. MACCHIAVELLO, and M. MOSCA, Quan-
tum Algorithms Revisited, Proceedings of the Royal Society, A vol. 454,
(1998), pp. 339-354.

[3] D. DEUTSCH, Quantum theory, the Church-Turing principle and the
universal quantum computer, Proceedings of the Royal Society, A vol.
400 (1985), pp. 97-117.

[4] R.P. FEYNMAN, Simulating physics with computers, International
Journal of Theoretical Physics, vol. 21 (1982), pp. 467-488.

[5] G. GALILEI, Saggiatore, [1623], Opere, A Favaro (ed.), vol. 6, Edizione
Nazionale, Firenze, 1896.

[6] H.H. GOLDSTINE, The Computer from Pascal to von Neumann,
Princeton University Press, Princeton, 1972.

[7] C.H. PAPADIMITRIOU, Computational Complexity, Addison-Wesley,
Reading, 1994.

[8] R. PENROSE, Shadows of the mind, Oxford University Press, Oxford,
1994.

[9] R. RIVEST, A. SHAMIR, and L. ADLEMAN, On Digital Signatures
and Public-Key Cryptosystems, Technical Report MIT/LCS/TR-212,
MIT Laboratory for Computer Science, January 1979.

[10] P. SHOR, Algorithms for quantum computation: discrete log and fac-
toring, Proceedings of the 35th Annual Symposium on the Foundations
of Computer Science, S. Goldwasser (editor), IEEE Computer Society
Press, Los Alamitos, 1994, pp. 124-134.

18

[11] A. TURING, On computable numbers with an application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society,
2 vol.42 (1936-37), pp. 230-265.

[12] E. P. WIGNER, The unreasonable effectiveness of mathematics in the
natural sciences, Communications on Pure and Applied Mathematics,
vol. 13,(1960), pp. 1-14.

19

